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A FAST SUMMATION TREE CODE FOR MATÉRN KERNEL

JIE CHEN∗, LEI WANG∗, AND MIHAI ANITESCU∗

Abstract. The Matérn family of functions is a widely used covariance kernel in spatial statis-
tics for Gaussian process modeling, which in many instances requires calculation with a covariance
matrix. In this paper, we design a fast summation algorithm for the Matérn kernel in order to
efficiently perform matrix-vector multiplications. This algorithm is based on the Barnes–Hut tree
code framework, and several important aspects are addressed: the partitioning of the point set, the
computation of the Taylor approximation with error estimates, and the handling of multiple sets of
weights originating from multiple matrix-vector multiplications with the same matrix. The compu-
tational cost of the derived algorithm scales as O(n logn) for n points. Comprehensive numerical
experiments are shown to demonstrate the practicality of the design. The development of a similar
algorithm based on the multipole expansion framework is also discussed.
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1. Introduction. The Matérn kernel [21, 23, 18] consists of a family of Matérn
functions that are defined based on the modified Bessel functions of the second kind
of different orders. The Matérn kernel is positive definite, and it is often used as a
covariance function in modeling Gaussian processes for its flexibility in capturing local
smoothness of the data. It entails a wide array of applications in spatial statistics,
especially geostatistics [11, 23].

The Matérn kernel gives rise to a positive definite covariance matrix Φ, which is
fully dense and whose size scales with the square of the number n of observations of
the underlying process. The matrix-vector multiplication with respect to Φ is crucial
in many statistical problems, such as sampling, maximum likelihood estimation, and
interpolation (also known as kriging) [21, 23]. Some of these problems require the
solution of a linear system with respect to Φ, whereby an iterative method with an
efficient calculation of the product Φq for any vector q is one of the most successful
solution techniques [3, 22]. In some other problems, there is no linear system to
solve; but the matrix-vector multiplication is an essential tool for a matrix-free style
of technique to work for large n [8].

Motivated by the needs of efficiently computing the product Φq for the Matérn
kernel, we have designed a fast summation algorithm that runs asymptotically faster
than O(n2), the cost of a straightforward calculation. The goal of the design is
an algorithm that handles various practical situations, including arbitrary Matérn
orders, multiple vectors for the same matrix, different point set distributions, and the
possible anisotropy when defining distances for high-dimensional points. To this end,
we present an algorithm based on the tree code framework pioneered by Barnes and
Hut [5]. The tree code was initially designed to efficiently perform force calculations
for gravitational n-body problems with an O(n log n) computational complexity. It
was later developed for various kernels and different applications (see, e.g., [17, 16,
15]). For the Matérn kernel, preliminary work [3] was conducted for the special
order 1.5. In this work, we address the desired functionality and propose several
nonconventional designs based on the framework.
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Following a general tree code, the proposed algorithm recursively divides a set
of points to form a hierarchy of clusters. The evaluation of the kernel for a pair of
points can be approximated by the truncated series expansion of the kernel around the
centroids of the clusters that contain the two points, if the clusters are sufficiently far
away. Series expansion is a central analytic tool in a fast summation algorithm. For
the Matérn kernel, it is not straightforward to derive an expansion that is inexpensive
to evaluate, even though abundant results of the expansions of the Bessel functions
are known (see, e.g., [12, 1]). Thus, we first derive recurrence formulas to compute
the Taylor expansion coefficients through the use of several properties of the Bessel
functions.

The expansion of the kernel at two centroids is called a double expansion, whereas
the usual expansion at only one centroid is called a single expansion. Double expansion
was considered in [7]. An advantage of double expansion is that the number of centroid
pairs that require expansion coefficients is potentially significantly reduced. Since the
computation of expansion coefficients is expensive (to be discussed shortly), double
expansion is a natural design to reduce the cost.

Because of the limited results known for the Taylor approximation of the Matérn
kernel, an innovation of this work is that we use a data analysis approach to estimate
the truncation error, so as to determine when and how the approximation is performed.
The idea of the analysis is to regress the error on several factors, such as centroid
distance and cluster radius, based on a set of samples. The form of the regression
is motivated by the analytic error bounds seen for other extensively studied kernels.
The hypothesized regression form works fairly well for our case.

To achieve wide applicability of the algorithm in real-life scenarios, we propose
a point set partitioning scheme that is different from the traditional axes-aligned ap-
proaches (for example, a 3D octree). This scheme is based on the principal component
analysis that maximizes the separation of two clusters, in order to encourage that the
radii of the resulting clusters are as small as possible. It copes with the arbitrary
distribution of the point set and the possible anisotropy when defining distances.
Furthermore, this scheme always partitions a point set into two balanced subsets; and
thus it results in a complete binary tree with equally sized leaves, which suggests a
natural distribution of the data for parallel processing. The parallel implementation
of our algorithm will be discussed in a forthcoming paper.

Because of the targeted use with multiple sets of weights, the algorithm is nat-
urally separated in two phases: planning and evaluation. All the computations in-
dependent of the weights are put in the first phase, so that the second phase can
reuse the same information for different sets of weights as much as possible. These
computations include the partitioning, the regression of the error formulas, and most
notably the generation of the Taylor coefficients. The computational work of com-
puting the Taylor coefficients is not negligible, especially when the points are in high
dimensions; thus it is advantageous to precompute and store them in order to avoid
repeated calculations.

We note that although a general tree code framework yields O(n log n) com-
putational complexity for a set of n points, there is in fact no strict guarantee on
achieving such a performance for arbitrary kernels, even if the points are uniformly
distributed. The rationale for the O(n log n) cost is based on the assumption that the
Taylor approximation occurs whenever the ratio between the cluster radius and the
centroid distance falls within a fixed threshold (known as the multipole acceptance
criterion [5, 4, 20]). This ensures that there is a constant rate of reduction in the
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summation cost across the tree levels. On the other hand, our algorithm dynamically
determines the occurrence of approximation, and we do not predefine a threshold for
this ratio. This distinction makes it hard to conclude a precise complexity of our
algorithm. Nevertheless, experimental results for uniformly distributed points agree
with the O(n log n) scaling.

The rest of the paper is organized as follows. Section 2 formally defines the Matérn
kernel, and Section 3 the notation of summation and expansion. The computational
routine for computing the Taylor coefficients is developed in Section 4. Section 5
completes several details of the tree code, including the partitioning of the point set
in Section 5.1 and the estimation of errors in Section 5.2. Then, Section 6 presents
the formal algorithm, together with an estimate of the computational cost. Compre-
hensive numerical experiments are shown in Section 7. Section 8 presents concluding
remarks and discusses the possibility of developing a fast summation algorithm based
on the multipole expansion framework.

2. Matérn kernel. The Matérn function of a one-dimensional variable r ≥ 0 of
order ν > 0 is defined as [18]

φ(r) =
(
√

2νr)νKν(
√

2νr)

2ν−1Γ(ν)
, (2.1)

where Kν is the modified Bessel function of the second kind of order ν and Γ is
the Gamma function. The denominator 2ν−1Γ(ν) is used for normalization so that
φ(0) = 1 for any ν. Figure 2.1 plots the function with several values of ν.
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Fig. 2.1. Matérn function with different values of ν.

When the function is used as a radial basis kernel, the variable r is the elliptical
distance between two d-dimensional points x and y. Let ` = [`1, . . . , `d] be a vector
of scaling factors, one for each coordinate. We formally define r as

r =

√√√√ d∑
i=1

r2i
`2i

with ri = xi − yi. (2.2)

For convenience of presentation, we write the Matérn kernel by abuse of notation in
different forms: φ(r), φ(x − y) or φ(x,y). In different contexts these forms will not
cause confusion.

The parameter ν is often called the smoothness because the function φ(|x|), x ∈ R,
has a higher differentiability with respect to x when ν is larger. It also reflects the
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shape of the samples of the underlying Gaussian process, because when ν is small, the
sample deemed as a function is rough and has strong oscillations. The parameter ` is
called the scale because it controls the scaling of the distance between two points.

3. Fast summation with Matérn kernel. Given a set of n points {xj ∈ Rd}
and a set of associated weights {qj}, we are interested in computing the summations

si =

n∑
j=1

qjφ(xi − xj), for i = 1, . . . , n. (3.1)

In the matrix representation this is equivalent to computing the matrix-vector product
s = Φq where Φij = φ(xi − xj).

It is sometimes confusing when one distinguishes xi and xj only by using the
index. Therefore, we slightly change the notation from xj to yj and rewrite (3.1) as

si =

n∑
j=1

qjφ(xi,yj), for i = 1, . . . , n. (3.2)

The points yj ’s are the sources, and xi’s are the targets. At the heart of the fast
summation is the Taylor approximation of φ at the centroid of a cluster of nearby
sources and the centroid of a cluster of nearby targets, so that one can replace the
summation of the n terms in (3.2) by the evaluation of a Taylor polynomial, if the
two clusters are sufficiently far away. For this, we use Cs to denote a set of sources
with a centroid yc, and use Ct to denote a set of targets with a centroid xc. Further,
we define the partial sum

si(Cs) :=
∑

yj∈Cs

qjφ(xi,yj).

When the whole set of points is partitioned into disjoint subsets Cs’s, we have

si =
∑
Cs

si(Cs).

To express the Taylor expansion, we need the following notation for multivariate
calculus. For x,y ∈ Rd and j,k ∈ Zd+, the partial derivative ∂jx := ∂j1x1

∂j2x2
· · · ∂jdxd

,

the integer power xj := xj11 x
j2
2 · · ·x

jd
d , the factorial j! = j1!j2! · · · jp!, the binomial

coefficient
(
k
j

)
:=
(
k1
j1

)(
k2
j2

)
· · ·
(
kd
jd

)
, and the norm ‖j‖ := j1 + j2 + · · ·+ jd. Note that

the last notation means the 1-norm of the nonnegative integer vector j; it is not to
be confused with the 2-norm of a general vector.

Let the double expansion of φ at xc and yc be

φ(xc + ∆x,yc + ∆y) =

∞∑
‖j‖=0

∞∑
‖k‖=0

∂jx∂
k
yφ(xc,yc)

j!k!
(∆x)j(∆y)k. (3.3)

This can be obtained by first expanding φ around yc, treating xc+∆x constant, then
expanding φ around xc, treating yc constant. Since ∂jxφ = (−1)‖j‖∂jyφ, we can write

φ(xc + ∆x,yc + ∆y) =

∞∑
‖j‖=0

∞∑
‖k‖=0

(
j + k

j

)
∂j+k
y φ(xc,yc)

(j + k)!
(−∆x)j(∆y)k. (3.4)
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With (3.4), one can approximate the partial sum si(Cs) by using an order-(p1, p2)
Taylor approximation:

si(Cs) ≈
∑

yj∈Cs

qj

p1∑
‖j‖=0

p2∑
‖k‖=0

(
j + k

j

)
∂j+k
y φ(xc,yc)

(j + k)!
(xc − xi)

j(yj − yc)
k. (3.5)

If the approximation error is δ for any xi ∈ Ct and yj ∈ Cs and for all Ct and Cs,
then in the matrix representation the 2-norm approximation error of s is less than
δ‖q‖2.

Note that the double expansion (3.3) naturally requires two truncation orders,
p1 for the near field (where target points are located) and p2 for the far field (where
source points are located). Although not used in this paper, an expansion that leads
to a single truncation order may be of interest:

φ(xc + ∆x,yc + ∆y) =

∞∑
‖j+k‖=0

∂jx∂
k
yφ(xc,yc)

(j + k)!
(∆x)j(∆y)k. (3.6)

This expansion simply treats the concatenation of xc and yc as one (2d)-dimensional
variable and expands φ at this variable. Then, the truncation of this expansion can
occur at, say, ‖j+k‖ = p1 +p2. Comparing the truncation of (3.3) with that of (3.6),
one sees that the former distinguishes the near and the far fields, whereas the latter
does not. It is often a good idea to place a small order for the near field and a large
order for the far field, if ∆x is small and ∆y is relatively large.

From a computational perspective, we rearrange the terms in (3.5) in order that
the expression on the right can be efficiently evaluated:

si(Cs) ≈
p2∑
‖k‖=0

p1∑
‖j‖=0

(
j + k

j

)
︸ ︷︷ ︸
binom. coef.

∂j+k
y φ(xc,yc)

(j + k)!︸ ︷︷ ︸
Taylor coef.

(xc − xi)
j︸ ︷︷ ︸

target momt.

 ∑
yj∈Cs

qj(yj − yc)
k


︸ ︷︷ ︸
weighted source momt.

.

(3.7)
The general idea of the fast summation is to precompute the binomial coefficients and
the Taylor coefficients, because they can be shared by different targets. Given the
weights, the weighted source moments are also computed. Then, for each target xi,
the target moments are computed for each cluster Cs of sources, and the computed
partial sum si(Cs) is accumulated to si. The details are presented in Sections 5 and 6.
First, however, it is necessary to consider how the Taylor coefficients are computed.

4. Taylor coefficients. We use recursion to compute the Taylor coefficients
∂kyφ/k! for ‖k‖ up to some order p. Key to the recurrence is the following property
of Kν(R) for any ν > 0 (see, e.g., [12, p. 294, Table V-1]):

d

dR
RνKν(R) = −RνKν−1(R). (4.1)

It relates the derivatives of the Matérn function by successively reducing the order ν
when is it positive. When ν becomes negative, the relation Kν = K−ν is useful.

4.1. Recurrence formula. Define c =
√

2ν, R = cr, gν(R) = RνKν(R). Then

∂kyφ

k!
=

∂kygν(cr)

2ν−1Γ(ν) · k!
.
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For a general c > 0 and any k and ν, we derive a recurrence formula for evaluating

Gk
ν (c) :=



∂kygν(cr)

2ν−1Γ(ν) · k!
, ν > 0

∂kygν(cr)

z(cr) · k!
, ν = 0

(cr)−2ν · ∂kygν(cr)

2−ν−1Γ(−ν) · k!
, ν < 0,

(4.2)

given r 6= 0. Then, for the specific ν in the kernel and k, we substitute c by
√

2ν and
obtain

∂kyφ

k!
= Gk

ν (
√

2ν).

The reason for breaking the definition of Gk
ν (c) into several cases with respect to ν is

to encourage a better numerical behavior of the recurrence relation. For now we note
that z is some function used for this purpose; it will be defined in the next subsection.
The case of ν < 0 for Gk

ν (c) is needed even though a Matérn order is always positive,
because a recurrence may eventually decrease ν to negative even though it starts from
positive.

To simplify notation, we write ∂i to mean the partial derivative with respect to
yi. With (4.1), we have

∂igν(cr) =
dgν(cr)

dr
· ∂r
∂ri
· dri
dyi

=
c2

`2i
· ri · gν−1(cr). (4.3)

Then, by applying the Leibniz rule for higher derivatives, we have for ki > 1,

∂kii gν(cr) =
c2

`2i
·∂ki−1i (ri ·gν−1(cr)) =

c2

`2i
·
[
ri∂

ki−1
i gν−1(cr)− (ki − 1)∂ki−2i gν−1(cr)

]
.

(4.4)
If we further differentiate the above formulas with respect to other components of y
and then divide the results by k!, (4.3) and (4.4) become

∂kygν(cr)

k!
=
c2

ki

ri
`2i
·
∂k−ei
y gν−1(cr)

(k − ei)!
, (ki = 1) (4.5)

∂kygν(cr)

k!
=
c2

ki

ri
`2i
·
∂k−ei
y gν−1(cr)

(k − ei)!
− c2

ki

1

`2i
·
∂k−2ei
y gν−1(cr)

(k − 2ei)!
, (ki > 1) (4.6)

respectively, where ei means the integer vector whose ith entry is 1 and other entries
are zero. By adopting the convention that ∂ky = 0 if any of the components of k is
negative, we can consolidate (4.5) to (4.6). Then, we rewrite (4.6) as

Gk
ν (c) = h(ν)

[
c2

ki

ri
`2i
Gk−ei
ν−1 (c)− c2

ki

1

`2i
Gk−2ei
ν−1 (c)

]
, (4.7)

where h, a function of ν, is determined from the different cases of the definition of
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Gk
ν (c) in (4.2):

h(ν) =



1

2(ν − 1)
, ν > 1

z(cr), ν = 1

(cr)2ν−2Γ(1− ν)

22ν−1Γ(ν)
, 0 < ν < 1

1

(cr)2z(cr)
, ν = 0

− 2ν

(cr)2
, ν < 0.

(4.8)

This formula suggests that the kth partial derivative at the level ν depends on lower
derivatives at level ν − 1.

Note that the recurrence relation (4.7) is valid for any component i. For numerical
stability, we can use a weighted average. Specifically, we multiply ki on both sides
of (4.7), sum over all i, and divide by ‖k‖. We obtain

Gk
ν (c) =

c2h(ν)

‖k‖

[
d∑
i=1

ri
`2i
Gk−ei
ν−1 (c)−

d∑
i=1

1

`2i
Gk−2ei
ν−1 (c)

]
. (4.9)

Since we adopt the convention that Gk
ν = 0 if any of the components of k is negative,

(4.9) is valid for all nonnegative integer vectors k except 0.

4.2. Initial condition. When k = 0, the definition (4.2) leads to

G0
ν(c) =



(cr)νKν(cr)

2ν−1Γ(ν)
, ν > 0

K0(cr)

z(cr)
, ν = 0

(cr)−νK−ν(cr)

2−ν−1Γ(−ν)
, ν < 0.

(4.10)

We examine it case by case. The cases ν > 0 and ν < 0 lead to the same value
of G0

ν(c), for a pair of positive ν and negative ν that have the same absolute value.
When c =

√
2ν, G0

ν(c) is equal to an evaluation of the Matérn function φ(r). When
r is close to zero, the function value is close to 1.

Now consider ν = 0. When r → 0, K0(cr) tends to infinity. The function z(cr) is
thus used to scale K0(cr) so that G0

ν(c) behaves better when it is close to the origin.
Consider an approximation of K0 around the origin [1, (9.6.12) and (9.6.13)]:

K0(R) ≈ −γ − log

(
R

2

)
when R ≈ 0,

where

γ =

∫ ∞
1

(
1

bxc
− 1

x

)
dx ≈ 0.577216

is the Euler–Mascheroni constant. Then, we define

z(R) :=

{
−γ − log

(
R
2

)
, 0 < R < R0

1, R ≥ R0.
(4.11)
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Here, R0 = 2e−γ−1 ≈ 0.413 is used to make z continuous. With this definition, G0
ν(c)

is not far from 1 when cr < R0, and it is equal to K0(cr) when cr ≥ R0.

4.3. Summary. Summarizing the above discussions, we compute the Taylor
coefficients

∂kyφ/k! = Gk
ν (
√

2ν)

using the recurrence formula (4.9) with the initial condition (4.10). The recurrence
is based on both k and ν. We use two d-dimensional arrays A and B to store all the
intermediate values of Gk

ν (
√

2ν). Specifically, given an expansion order p, we define
(in C/C++ style)

A[k1] · · · [kd] = Gk
ν′(
√

2ν) and B[k1] · · · [kd] = Gk
ν′−1(

√
2ν),

for ν′ = ν − p, . . . , ν and 0 ≤ ‖k‖ ≤ p. All the values in A are computed by using
B; and after A is filled, the values of A are copied to B. This process is repeated
p + 1 times to increase ν′ until finally A (and B) holds the values of Gk

ν (
√

2ν). The
following subroutine TaylorCoefficients summarizes this procedure.

1: subroutine TaylorCoefficients(p, x− y)
// In the following, skip the term(s) whenever array index < 0

2: Initialize B with zeros
3: for j = 0, . . . , p do
4: A[0] · · · [0] = G0

ν−p+j(
√

2ν)
5: for ‖k‖ = 1, . . . , j do
6: A[k1] · · · [kd] = 2νh(ν − p+ j)/‖k‖×

[(r1 ·B[k1 − 1] · · · [kd]−B[k1 − 2] · · · [kd])/`21 + · · ·
· · ·+ (rd ·B[k1] · · · [kd − 1]−B[k1] · · · [kd − 2])/`2d]

7: end for
8: Copy the entries of A to B
9: end for

10: return A
11: end subroutine

The computational cost of TaylorCoefficients isO(pd) in storage andO(pd+1)
in time. To reduce memory usage, note that the array A[k1] · · · [kd] (and similarly B)
uses only the entries with 0 ≤ k1 + · · ·+ kd ≤ p. The total number of such entries is

p∑
i=0

(
i+ d− 1

d− 1

)
=

(
p+ d

d

)
.

Therefore, instead of using a full d-dimensional array of size (p+1)d, one may consider
using a 1-dimensional array A′ of size

(
p+d
d

)
, where the indexing of A′ is in accordance

with the increasing order of ‖k‖, that is,

A′[0] = A[0] · · · [0][0],

A′[1] = A[0] · · · [0][1], . . . , A′[d] = A[1] · · · [0][0],

A′[d+ 1] = A[0] · · · [0][2], A′[d+ 2] = A[0] · · · [1][1], . . . , A′[
(
2+d
d

)
− 1] = A[2] · · · [0][0],

...

A′[
(
p−1+d
d

)
] = A[0] · · · [0][p], . . . , A′[

(
p+d
d

)
− 1] = A[p] · · · [0][0].
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This design comes from a practical consideration, although it does not change the
asymptotic storage cost. For some medium-sized p and small d (say, p = 10 and
d = 3), the storage of A′ is only about 1/d! of that of A. When many sets of the
Taylor coefficients (for different x− y) are stored, this will be a significant saving.

4.4. Discussion of numerical behavior. The initial condition of the recur-
rence relation is well behaved. When r is close to zero, the value of G0

ν is close to 1 for
any ν; and when r is not abnormally large, G0

ν will not be exceedingly small. In fact,
the term “abnormally large” is vague, and we delay its clarification until Section 5.2
when error control is the concern.

The recurrence depends on the function h(ν′) defined in (4.8). It has discontinu-
ities at ν′ = 0 and ν′ = 1, and when approaching these discontinuities the function
value grows without bound. Thus, the recurrence may be numerically unstable when
the smoothness parameter ν is close to, but not exactly, an integer. In many ap-
plications, it is not necessary to take a smoothness that is too close to an integer
(otherwise replacing it by the closest integer may be a practical workaround). More-
over, we demonstrate in Section 7.4 that the recurrence still works in practice for a ν
differing from 1 by only 10−5.

5. Tree code framework. A general tree code is as follows. First, the whole
set of points is recursively partitioned to form a tree structure, where each tree node
represents a cluster of points. Each leaf node then contains a set of targets. We
consider a target xi that belongs to some Ct, and we initialize si = 0. A top-down
tree-walk is performed starting from the root. Any tree node being visited contains
a set Cs of sources. Given a tolerance ε, if the truncated Taylor expansion at the
centroids of Cs and Ct yields an approximation error that is less than ε, then the
partial sum si(Cs) is computed by using (3.7) and is accumulated to si. Otherwise,
the children of the current node are visited. This procedure is performed recursively
until a leaf node is reached. At the leaf node, direct summation is performed between
xi and all points in Cs. The result is also accumulated to si. The computation of si
is complete when all recursive branches of the treewalk terminate.

In practice, multiple sets of weights {qj} may be of interest since they correspond
to matrix-vector multiplications with the same matrix and multiple right-hand sides.
Then, it is beneficial to split the recursive treewalk in two phases so that the work of
computing the Taylor coefficients is not repeated for different sets of weights. This
idea leads to two subroutines, TreeWalk-Planning and TreeWalk-Evaluation.
In the planning phase, the Taylor coefficients up to order p = p1+p2 for the expansion
at xc and yc, which are the centroids of the leaf node leaf and the tree node node

being visited, respectively, are computed if the expansion criterion is met. The sub-
routine TaylorCoefficients introduced in Section 4.3 is used for this computation.
Then, in the evaluation phase, the partial sums are computed by using either Taylor
approximation or direct summation. Both phases require a subroutine CanExpand
that checks whether the Taylor approximation yields an error less than ε. This sub-
routine is related to the error control scheme to be discussed in Section 5.2 and is
presented there.

1: subroutine TreeWalk-Planning(leaf, node, p)
2: Let Ct and Cs be the point clusters that leaf and node contain, respectively
3: if CanExpand(Ct, Cs, ε) then
4: Let xc and yc be the centroids of Ct and Cs, respectively
5: Call TaylorCoefficients(p, xc − yc) to compute and store
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the Taylor coefficients ∂kyφ(xc,yc)/k! for all ‖k‖ ≤ p
6: else if node has no children then
7: // Do nothing
8: else
9: For all child of node, call TreeWalk-Planning(leaf, child, p)

10: end if
11: end subroutine

1: subroutine TreeWalk-Evaluation(leaf, node)
2: Let Ct and Cs be the point clusters that leaf and node contain, respectively
3: if CanExpand(Ct, Cs, ε) then
4: for all xi ∈ Ct do
5: Compute target moment and weighted source moment
6: Compute si(Cs) using Taylor approximation (3.7)
7: Update si ← si + si(Cs)
8: end for
9: else if node has no children then

10: for all xi ∈ Ct do
11: Update si ← si +

∑
yj∈Cs

qjφ(xi,yj) via direct summation
12: end for
13: else
14: For all child of node, call TreeWalk-Evaluation(leaf, child)
15: end if
16: end subroutine

Based on the above framework, we address the following issues to complete the
algorithm:

1. How to partition the point set?
2. How to determine whether the Taylor approximation yields an error less than

ε?

The answers are in the following two subsections.

5.1. Partitioning of the point set. For simplicity, let us consider R3. When
the points are uniformly distributed in a cube, it is natural to rotate the cube and
align its faces with the coordinate axes. Usually, the cube is partitioned into 8 equal
subcubes and the partitioning is recursive (see Figure 5.1(a)). This results in an
octree hierarchy. If the points are not uniform in space, one can selectively partition
dense cubes so that leaf nodes of the tree represent clusters with roughly the same
number of points, or one can always partition a cube into 8 subcubes that contain
equal numbers of points. In the latter case, the resulting hierarchy is a complete tree.

However, the configuration of the point set is often more complicated in practice.
Consider, for example, Figure 5.1(b), where the points are uniform. Let us say the
x-dimension of the cube is stretched to four times that of the unit cube. Instead of
the 8-way partitioning scheme used for (a), it is more natural to first partition the x-
dimension into four equal parts, because in this manner the diameter of the resulting
clusters is much smaller than that resulting from the usual 8-way partitioning. In
other words, the points are more compactly grouped together. A benefit of having a
smaller diameter is that the Taylor approximation is more accurate.

Even when the cube is not stretched, but if the scale parameters are, for example,
[1/4, 1, 1], it is still beneficial to first partition the x-dimension into four equal parts
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(a) Cube (b) Stretched cube (c) Arbitrary shape/density

Fig. 5.1. Different point set configurations and partitioning schemes.

in order to obtain clusters of a small elliptical diameter.

Consider a general setting where the point set has an arbitrary shape and uneven
density (see Figure 5.1(c)). To systematically partition the point set, we consider the
binary space partitioning. The idea is to use principal component analysis to partition
the space so that the elliptical diameters of the resulting clusters are as small as
possible. Without loss of generality, we prescale each coordinate of the points by the
corresponding scale parameter `i. Then, we find the principal direction along which
the variance of the scaled points is the largest. This direction is simply the dominant
eigenvector of the covariance matrix of the point set. For any hyperplane passing
through the centroid, using this vector as the normal direction minimizes the squared
sum of the distances between the points and the hyperplane. Therefore, partitioning
with this hyperplane encourages clusters that are more compactly grouped. Usually,
the hyperplane passing through the centroid does not yield equal-sized clusters; thus
the hyperplane has to be shifted along the normal direction. A convenient way to
perform the shift is to find the median of the signed distances between the points and
the hyperplane that passes through the centroid. By finding this median we obtain
the partitioning result.

The subroutine BiPartitioning summarizes the computations. The procedure
results in a complete binary tree because each time a cluster is bi-partitioned. It
requires a parameter n0 that specifies the maximum size of a leaf. Therefore, the
number of tree levels (including the root) is dlog2(n/n0)e + 1. The subroutine is
recursive, and input to the subroutine is the cluster X to be partitioned and the
tree level where X is located. When level has not reached dlog2(n/n0)e + 1, the
subroutine recursively calls itself with the two resulting partitioned clusters. For
more information on the procedure, see [9], where the same idea is used to construct
a nearest neighbors graph for a set of points in a divide-and-conquer manner.

1: subroutine BiPartitioning(X, n0, level)
2: For each xi ∈ X, scale xi for each coordinate by ` to get x′i. Let X ′ = {x′i}
3: Compute the centroid x′c of X ′

4: Form the covariance matrix C of the point set X ′

5: Compute the dominant eigenvector u of C
6: Compute signed distances ξi = 〈x′i − x′c, u〉 for all i
7: Find ξm, the median of {ξi}
8: Let two resulting clusters Xl = {xi | ξi ≤ ξm} and Xr = {xi | ξi > ξm}
9: if level < dlog2(n/n0)e+ 1 then
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10: BiPartitioning(Xl, n0, level+1)
11: BiPartitioning(Xr, n0, level+1)
12: end if
13: end subroutine

Binary space partitioning has several advantages. First, the clusters are more
compactly grouped by considering the shape and the density of the point set and the
scaling parameters. Second, the resulting hierarchy tree is a binary tree, independent
of the spatial dimension d. Furthermore, the tree is complete, and each leaf node
contains almost the same number of points (differing by at most 1). This provides
a natural and convenient way to distribute the points in parallel processing. Third,
the computational cost of lines 2 to 8 (that is, all the work excluding the recursion)
is linear in the point set size.1 This cost is asymptotically the same as that of the
usual, say 8-way, partitioning (in the 3D case). Then, including recursion, the overall
cost of calling BiPartitioning with the whole set of n points is O(n log2(n/n0)).

5.2. Error control. It is important to characterize the error, denoted by δ,
between the actual value of the kernel and that of its Taylor approximation. Given a
pair of expansion orders (p1, p2), the factors that affect the bound of δ are the elliptical
distance τ between a pair of centroids and the elliptical radius ρ for a cluster. The
quantity ρ is the expansion radius. To distinguish sources and targets, we use ρt for
a target cluster and ρs for a source cluster (see Figure 5.2). It is desirable to bound
δ based on ρt, ρs, and τ .

τ

xc

ρt

yc

ρs

targets
sources

Fig. 5.2. Expansion radii ρt, ρs and distance τ (all elliptical).

Many kernels enjoy such a bound that is analytically derived. When only a single
expansion around the source centroid is used, there is only one expansion order p.
The following lists a few bounds for several kernels (see (2.6), (4.9), and (5.17) of [6]):

A1ρ

(
1

2.12...

)p
,

A2

p+ 1

τ

τ − ρ

(ρ
τ

)p+1

,
A3

τ − ρ

(ρ
τ

)p+1

,

where A1, A2 and A3 are all positive constants. These bounds correspond to a 1-
dimensional multiquadric expanded with Laurent series when τ ≥ 3ρ, a complex
logarithm expanded with Laurent series when ρ < τ , and a 3-dimensional reciprocal
function expanded with spherical harmonics when ρ < τ , respectively.

1To be more exact, assuming that the current point set X has n′ points, the computational cost
of lines 2 to 8 is O(d2n′+d3), where the first term comes from computing the covariance matrix and
the second term comes from computing eigenvectors. Because d is a small constant, it is ignored.
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An error bound for the Matérn kernel is unknown. We therefore seek a different
approach. Motivated by the above examples, we hypothesize that for a single expan-
sion with order-p truncation, the maximum of the errors, denoted by δmax

p , for all
points within an expansion radius ρ can be expressed as

log10 δ
max
p (ρ, τ) = α1 + α2 log10 τ + α3 log10(ρ/τ), (H1)

where α1, α2, and α3 are coefficients to be determined. The quantity δmax
p is a function

of ρ and τ , given p. The term ρ/τ is the expansion ratio, and it is always less than 1.
Then, for a double expansion with truncation orders (p1, p2), we further hypothesize
that the maximum of errors for all pairs xi ∈ Ct and yj ∈ Cs is computed as

δmax
p1,p2(ρt, ρs, τ) = max{δmax

p1 (ρt, τ + ρs), δ
max
p2 (ρs, τ + ρt)}, (H2)

where δmax
p1,p2 is a function of ρt, ρs, and τ , given (p1, p2). When there is no confusion,

we write δmax for simplicity. We do not hypothesize δmax as a function of the expansion
orders, the reason for which will be clear soon.

5.2.1. Rationale. The rationale of the hypotheses (H1) and (H2) is supported
by a series of observations. We begin with the case of one dimension. Figure 5.3(a)
plots the variation of δmax with respect to τ in the log-log scale, by fixing ρ/τ . One
sees that when τ ≤ 1, the plot is almost a straight line. Plot (b) also shows a straight-
line pattern when we consider the variation of δmax with respect to ρ/τ , by fixing
τ . Varying τ and ρ/τ simultaneously results in a plane pattern as shown in plot (c).
This indicates that (H1) is highly plausible.

When one considers a double expansion, the hypothesis (H2) states that δmax
p1,p2

is an overall effect of two single expansions: δmax
p1 (ρt, τ + ρs), which results from an

expansion around the target centroid xc by assuming that the source yc is as far as
possible (having a distance τ +ρs from xc), and δmax

p2 (ρs, τ +ρt), which results from a
similar expansion around the source centroid. We show in plot (d) the change of δmax

p1,p2
by fixing τ but varying ρs and ρt. One sees a surface that looks like the superposition
of two planes, which is the reason we hypothesize a maximum of two terms in (H2).

The kernel may behave differently when moving to higher dimensions. To show
that (H1) and (H2) are reasonable, we also show the 2D case in plots (e) and (f).
They look similar to (c) and (d), respectively. In particular, we see a plane pattern
in (e) and a two-plane pattern in (f).

Note that the hypotheses (H1) and (H2) preclude the situation τ > 1. In plot (a),
one sees that δmax behaves completely differently in this situation. We do not know
how to characterize this behavior. On the other hand, the kernel used in practice
often entails large scaling parameters, making the case τ ≤ 1 predominant. Hence,
we do not consider the case τ > 1 further in this paper.

One may also be interested in the variation of δmax with respect to p and ν.
Figure 5.4 plots the variations. Plot (a) shows a visually straight-line pattern, which
in fact is not close to straight according to fitting. It is unknown what expression can
be used to fit plot (b).

5.2.2. Subroutines. Two subroutines are used to perform error control. The
first one, ErrorControlInfo, is used to test the hypotheses (H1) and (H2). It
chooses a few τ and ρ/τ , equally spaced in the log-scale from 10−2.5 to 100.5. For each
pair of τ and ρ/τ , it estimates δmax

p2 (ρ, τ), which is the maximum absolute difference
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(f) 2D, ν = 1.3, τ = 1/3, p1 = 3, p2 = 5

Fig. 5.3. Taylor approximation error with respect to τ and ρ/τ .

between φ(xc,yc + ∆y) and

p2∑
‖k‖=0

∂kyφ(xc,yc)

k!
(∆y)k,

for all ‖xc − yc‖2 = τ and ‖∆y‖2 = ρ (see (3.4) when ∆x is zero). Of course, we
cannot exhaust all such vectors xc − yc and ∆y, and thus a sampling is used. With
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Fig. 5.4. Taylor approximation error with respect to p and ν.

τ , ρ, and δmax
p2 , (H1) is then regressed to obtain the coefficients α1, α2, and α3. Note

that because of machine precision, some computed δmax
p2 ’s are not useful for regression

if they are less than, say, 1e-14, to be safe. We say that (H1) is valid if the absolute
difference between both sides is not larger than 1, which means that the estimated
error departs from the true error by at most one digit.

Similarly, δmax
p1 is estimated; and another set of coefficients α1, α2, and α3 is

produced. With these coefficients, the three terms in (H2), δmax
p1,p2 , δmax

p1 , and δmax
p2 ,

are estimated/computed by performing another sampling. This time, xc − yc, ∆x,
and ∆y are sampled with a 2-norm fixed at τ , ρt, and ρs, respectively. Then, (H2) is
tested. Similar to the case of (H1), the validity of (H2) is determined by whether the
absolute difference between both sides is no larger than 1.

If either (H1) or (H2) is invalid, the error control scheme developed here is not
successful and the straightforward summation has to be used (which never happened
in our experience). Otherwise, the two sets of coefficients are returned. A second
subroutine CanExpand uses these coefficients in the recursive treewalks to determine
whether Taylor expansion occurs.

1: subroutine ErrorControlInfo
2: Define S1 and S2, each one containing 10 numbers equally spaced in [−2.5, 0.5].

// Test of (H1)
3: for all τ and ρ where log10 τ ∈ S1 and log10(ρ/τ) ∈ S2 do
4: Estimate δmax

p2 (ρ, τ) using a sampling approach.
5: end for
6: Use ρ, τ , and δmax

p2 to regress (H1). Obtain α1, α2, and α3.
7: If difference between both sides of (H1) is larger than 1, return error
8: Repeat lines 3 to 7 by changing p2 to p1 and obtain another set of α1, α2, α3.

// Test of (H2)
9: for all τ , ρt, ρs where log10 τ ∈ S1, log10(ρt/τ) ∈ S2 and log10(ρs/τ) ∈ S2 do

10: Estimate δmax
p1,p2(ρt, ρs, τ), δmax

p1 (ρt, τ + ρs), and δmax
p2 (ρs, τ + ρt).

11: end for
12: Use δmax

p1,p2 , δmax
p1 , and δmax

p2 to verify (H2) for all ρt, ρs, and τ .
13: If difference between both sides of (H2) is larger than 1, return error
14: return two sets of α1, α2, α3

15: end subroutine
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1: subroutine CanExpand(Ct, Cs, ε)
2: If ρt + ρs ≥ τ , return false
3: Compute δmax

p1,p2(ρt, ρs, τ) using the fitted values of α1, α2 and α3.
4: If δmax

p1,p2(ρt, ρs, τ) < ε, return true; otherwise, return false
5: end subroutine

6. The algorithm. We are ready to present the overall algorithm. As men-
tioned, the algorithm comprises a planning phase and an evaluation phase. The
planning phase is independent of the weights and is computed only once. In this
phase, the point set is recursively partitioned, the error formula is fitted, a binomial
table is constructed, and a treewalk is performed for each target set Ct (residing in
a leaf node) to compute Taylor coefficients. Then comes the evaluation phase given
a set of weights. The same recursive treewalk is performed in this phase. In the
intermediate tree levels, if Taylor expansion can be used, the target moments and the
weighted source moments are computed. On the other hand, in the leaf level, direct
summation is performed if Taylor expansion yields an unacceptable error. Algorithm 1
summarizes this procedure, where leaf and root are the nodes of the hierarchy tree
with their literal meanings.

Algorithm 1 Tree code method for computing (3.1)

Require: Parameters: expansion order (p1, p2), tolerance ε, maximum leaf size n0
// Planning phase

1: Call ErrorControlInfo to fit error formula (H1). If fitting is unsuccessful,
exist this algorithm and use straightforward summation to compute (3.1).

2: Call BiPartitioning({xi}, n0, 1) to construct a tree hierarchy for {xi}
3: Compute a binomial table to store

(
k
j

)
for all k ≤ p1 + p2 and j ≤ p1

4: for all leaf do
5: Call TreeWalk-Planning(leaf, root, p1 +p2) to obtain Taylor coefficients
6: end for

// Evaluation phase
7: Initialize si = 0 for all i
8: for all leaf do
9: Call TreeWalk-Evaluation(leaf, root) to update {si} for all {xi} ∈ leaf

10: end for
11: return {si}

Let us consider the computational complexity of the algorithm with respect to
n and n0. The bi-partitioning step scales as O(n log2(n/n0)) as concluded in Sec-
tion 5.1. The fitting of the error formula and the construction of the binomial table
are independent of n and n0, and so are the CanExpand calls in later treewalks. Let
mexpand and mdirect denote the number of node pairs where Taylor expansion occurs
and where direct summation occurs, respectively. The cost of TreeWalk-Planning
is O(mexpand +mdirect). In TreeWalk-Evaluation, the total work to compute the
partial sums is O(n0 ·mexpand), whereas the work to perform the direct summations
is O(n20 ·mdirect). Therefore, the computational complexities of the two phases are

planning: O(n log2(n/n0) +mexpand +mdirect),

evaluation: O(n0 ·mexpand + n20 ·mdirect).

A difficulty in further simplifying the above big-O expressions is that mexpand and
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mdirect vary with not only n but also the configuration of the point set. In a simplified
setting, for each point xi, if one Taylor approximation occurs in each intermediate
tree level and one direct summation happens at the leaf that contains xi, then

mexpand = (n/n0)(dlog2(n/n0)e − 1) and mdirect = n/n0. (6.1)

In general, estimating mexpand and mdirect is difficult, but empirical results usually ap-
proximately agree with (6.1); see Figure 7.1(b). This concludes the overall O(n log n)
cost of our algorithm, if n0 is ignored.

7. Numerical results. In this section we present several experimental results to
demonstrate the numerical behavior and the performance of the proposed algorithm.
For the purpose of practicality and code reuse, we implemented a parallel version of the
program in C++; but because of the complexity and several nontrivial designs of the
parallelism, we will discuss the parallelization in a separate paper. Thus, in this paper,
all the experiments were serial, conducted on a Pentium Xeon core of clock rate 2.6
GHz with 36 GB of memory. This setting is particularly helpful for demonstrating the
computational complexity of the serial algorithm. The evaluation of Kν used the AMOS
package available from http://www.netlib.org/amos/; see also [2]. The first few
subsections concern the computational cost and the input parameters; thus the kernel
was fixed at ν = 1.5 and ` = [4, 14, 3], and the set of points was uniformly distributed
in the unit cube. The final subsection, on the other hand, shows experiments on other
choices of the kernel parameters and point set distributions. In all experiments, the
weights were uniformly random numbers in the interval [0, 1].

7.1. Computational complexity. We first show the O(n log n) scaling of the
algorithm, which is one of the crucial factors when considering the usefulness of the
design. We set the expansion orders p1 = 3, p2 = 5, the tolerance ε = 10−6, and the
leaf size n0 = 64, and we vary n from approximately 1,000 to 8 million.
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Fig. 7.1. Computational cost with respect to n. The gray lines indicate O(n) and O(n2).

Figure 7.1(a) plots the running time of the tree code algorithm (separated in the
planning phase and the evaluation phase) and that of the straightforward summation.
The gray lines indicate O(n) and O(n2) scalings. Clearly, when n is sufficiently large,
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the growths of the planning time and the evaluation time are close to linear, whereas
the growth of the straightforward summation time is strictly quadratic.

In this particular setting, the tree code outperforms straightforward summation
starting at approximately 8,000 points. Before this, the points are too sparse and
no Taylor approximation occurs, probably because the choice of the leaf size yields
spatially large clusters even for the leaves. Plot (b) confirms this observation. When
n is less than 213 (approximately 10,000), the number mexpand of nodes pairs where
expansion occurs is zero, and thus all the calculations are direction summations at the
leaf level. Reading again plot (a), one finds that the red dotted markers (evaluation
time) for n < 213 overlap with the blue squared markers (straightforward summation
time). When n is larger than 216, both mexpand and mdirect grow linearly.

Note, also, that when n < 217 (approximately 100,000), a nontrivial planning time
is spent on the tree code. This cost is attributed to the testing of hypotheses (H1) and
(H2) and the fitting of the formulas therein. This “setup” cost is not small, especially
for high-dimensional points, because a sufficient sampling is needed to estimate the
approximation error well.

7.2. Choice of expansion orders. One characteristic of the proposed algo-
rithm is the need to specify a pair (p1, p2) of Taylor orders in order to approximate
the summation to a desired accuracy. For n = 16, 384 and n0 = 64, the table in
Figure 7.2(a) shows an optimal choice of (p1, p2) for ε ranging from 10−1 to 10−10.
The criterion of the optimality is the fastest evaluation time, by using an exhaustive
search. Since the surface of evaluation time with respect to p1 and p2 has a convex
shape, optimality can be located. One sees that as ε becomes smaller, larger orders
are preferred, and usually p2 is no smaller than p1. The corresponding evaluation
times, plotted in (b), show an increasing trend, although it is unclear how this trend
can be described as a simple formula of ε.

(a) Optimal expansion orders p1, p2 (in terms of evaluation time) given ε.

log10 ε −1 −2 −3 −4 −5 −6 −7 −8 −9 −10
p1 0 1 2 2 3 4 4 4 5 2
p2 0 1 2 3 4 5 8 10 8 0
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(c) Actual error δ versus ε.

Fig. 7.2. Choice of expansion orders by varying tolerance ε (n = 16, 384).

The actual approximation error δ (equivalently defined as the relative error of the
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matrix-vector product) versus the tolerance ε is shown in plot (c). By the nature of
the algorithm, δ is less than ε, as is shown in the plot, where the red circular markers
are all under the blue dashed reference line. This plot also shows that δ is often one
to two orders of magnitude smaller than ε, which indicates that ε can be used as a
useful reference when one is interested in computing the summation to a particular
accuracy.

One may notice that when ε = 10−10, not only do the values of p1 and p2 deviate
from the general trend, but also δ is far away from ε. A possible explanation is that
large expansion orders yield expensive evaluation of the Taylor approximation because
the number of coefficients explodes. Then, the gain in aggressive Taylor approxima-
tion at the top levels of the hierarchy tree is perhaps less significant compared with
performing the approximation at lower levels of the hierarchy, where cluster radii are
smaller and expansion orders do not need to be that large to achieve the designated
tolerance.

(a) Optimal expansion orders p1, p2 (in terms of evaluation time) given ε.

log10 ε −1 −2 −3 −4 −5 −6 −7 −8 −9 −10
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p2 1 1 2 2 3 5 6 7 7 7
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(c) Actual error δ versus ε.

Fig. 7.3. Choice of expansion orders by varying tolerance ε (n = 131, 072).

We also perform experiments on a larger n (131, 072) and report the results in
Figure 7.3. In this case, one sees a nice trend of the optimal expansion orders for all
ε. Moreover, the orders are generally smaller than those in Figure 7.2. The reason is
that the points are more densely populated and hence the spatial size of the leaves is
smaller. Thus, in order to achieve the same accuracy, the expansion order for source
nodes on the same level of the hierarchy tree need not be as large as that in the
smaller n case. One sees from plot (c), however, that δ is far away from ε, meaning
that perhaps using even smaller orders is sufficient to achieve the tolerance, although
the computational time increases.

7.3. Choice of leaf size. A subtle issue in a general tree code is the choice of
the leaf size. A size n0 > 1 is often used in order to ensure that the number of tree
levels is not too large and that the source clusters are not too small. Because we use
double expansion, an additional reason for setting n0 > 1 is to control the size of the
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target clusters. We investigate the optimal leaf size (again, in terms of evaluation
time) as n varies. The expansion orders are fixed at p1 = 3 and p2 = 5 and the
tolerance ε = 10−6.

Fig. 7.4. Evaluation time versus leaf size n0 for different n.

Figure 7.4 plots the evaluation times for several choices of the leaf size n0. The
solid blue squared markers indicate the fastest time, one for each n. These markers are
highlighted within a yellow band. In general, the curves show a decreasing–increasing–
stabilized trend, from small n0 to large n0. The decreasing–increasing trend provides
the opportunity to use an n0 that is larger than 1 to reduce the computational time.
The stabilized part is caused by the fact that when n0 is sufficiently large, no ap-
proximation will be accurate enough so that eventually direct summations are used
everywhere. Figure 7.4 seems to suggest that as n becomes larger, n0 should also
increase accordingly, although its increase is much slower than that of n.

7.4. Tests of different kernel parameters and point distributions. To
demonstrate that the algorithm is able to handle different kernel parameters and
point distributions (of practical interests), we show the results of some test cases in
Table 7.1. These tests are all performed on n = 131, 072 points with p1 = 3, p2 = 5,
ε = 1e-6 and n0 = 64. In rows 1 to 4 of the table, we arbitrarily vary ν and `. In
rows 5 to 7, the points are sampled on a sphere of radius 1, with uniformly random
azimuthal angle and polar angle. In rows 8 to 10, the points are sampled from the
30◦N to 60◦N of this sphere. Such a portion of the sphere is called a “spherical
segment,” and it simulates a band of latitudes of the globe. In rows 11 to 15, we
make ν to be progressively closer to 1, in order to test the numerical viability of the
algorithm in handling ν that is close to an integer.

One sees that in all cases the tree code is able to finish in a reasonable time,
whereas the straightforward summation is far more costly. Note also that although
n is the same across different cases, the straightforward summation spends differ-
ent amounts of time because the evaluation of the Matérn function (essentially the
evaluation of Kν) has a different cost for different ν.
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Table 7.1
Tests by varying kernel parameters and point distributions. “Plan.” means planning time,

“eval.” means evaluation time, “straight.” means straightforward summation time. All times are
in seconds.

ν ` Distri. Plan. Eval. Straight. Err. δ
1: 1.5 40, 14, 30 cube 25.31 205.79 6602.0 5.40e-09

2: 1.75 40, 14, 30 cube 32.25 305.40 18733.0 1.19e-09

3: 2 20, 30, 130 cube 26.74 200.76 9642.2 9.59e-11

4: 2.25 4, 14, 30 cube 32.02 351.72 24435.5 9.13e-09

5: 1.25 40, 14, 30 sphere 41.44 289.14 18019.7 3.41e-09

6: 1 20, 30, 130 sphere 30.48 301.79 10035.3 1.88e-08

7: 0.75 20, 30, 130 sphere 41.96 583.95 18001.9 1.69e-08

8: 1.25 40, 14, 30 sph. seg. 37.69 176.05 17617.6 4.77e-09

9: 1 20, 30, 130 sph. seg. 28.51 191.05 10420.9 2.85e-09

10: 0.75 20, 30, 130 sph. seg. 34.53 287.47 18815.5 2.41e-09

11: 1.1 40, 14, 30 cube 32.33 320.32 17435.0 3.86e-09

12: 1.01 40, 14, 30 cube 32.53 338.07 17508.7 5.13e-09

13: 1.001 40, 14, 30 cube 32.59 337.23 16897.4 5.36e-09

14: 1.0001 40, 14, 30 cube 32.49 337.25 16839.6 5.36e-09

15: 1.00001 40, 14, 30 cube 34.40 339.52 17899.0 5.39e-09

8. Concluding remarks. We have developed a fast summation algorithm for
the Matérn kernel based on the tree code framework. The algorithm handles ar-
bitrary kernel orders, multiple sets of weights, different point set distributions, and
the anisotropy in the definition of distances. With serial experiments of n up to 223

(8 million), we have demonstrated that the running time of the algorithm scales as
O(n log n).

A restriction of the algorithm is that the proposed error control scheme is not
applicable when points are far away (specifically, when the centroid distance τ of two
clusters is larger than 1). Although for many strongly correlated data the scale ` is
sufficiently large so that the algorithm can be used, it will be more favorable to rid
the constraint on τ in order to widen the applicability of the algorithm.

The algorithm aims at performing computations with an arbitrary order ν. Some-
times, an integer order or a half integer order is of particular interest. More efficient
methods may exist for handling these special cases. When ν is an integer, a series
expansion (with mostly integer powers) of the Matérn kernel is easy to obtain based
on that of Kν (see, e.g., [1, 12]). When ν is an integer plus 1

2 , the Matérn function
reduces to an exponential times a polynomial [18]. One can design different methods
for these cases in order to bypass the relatively expensive computation of the Taylor
coefficients for a general ν.

A natural question is whether a similar fast summation algorithm can be devel-
oped based on the framework of fast multipole method (FMM; see, e.g., [19, 13, 14, 10])
instead. An advantage of FMM is that in general it entails an O(n) computational
complexity. To apply this framework, one needs to perform a series expansion of
the kernel, where the series bases are inexpensive to evaluate and easy to convert
to polynomials. Note that the Taylor expansion in this paper is a local expansion
that depends on the centroid distance, whereas a series expansion used for FMM is
one that expands at the origin. The idea of a recurrence formulation in Section 4
is perhaps useful for computing the coefficients of a series expansion, although the
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formulas therein do not directly apply because r cannot be zero in (4.2). It remains to
investigate other analytic techniques to fill the gap of such an FMM-type of method.
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